

CO Oxidation on TiO₂ (110) Supported Subnanometer Gold Clusters: Size and Shape Effects

Lei Li,[†] Yi Gao,[‡] Hui Li,[†] Yu Zhao,[†] Yong Pei,^{*,§} Zhongfang Chen,^{||} and Xiao Cheng Zeng^{*,†}

[†]Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States

[‡]Laboratory of Physical Biology and Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China

[§]Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China

Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931

Supporting Information

ABSTRACT: We performed a comprehensive study of catalytic activities of subnanometer Au clusters supported on $TiO_2(110)$ surface (Au_n/TiO₂, n = 1-4, 7, 16–20) by means of density functional theory (DFT) calculations and microkinetics analysis. The creditability of the chosen DFT/microkienetics methodologies was demonstrated by the very good agreement between predicted catalytic activities with experimental measurement (*J. Am. Chem. Soc*, **2004**, *126*, 5682–5483) for the Au₁₋₄/TiO₂ and Au₇/TiO₂ benchmark systems. For the first time, the size- and shape-dependent catalytic activities of the subnanometer Au clusters (Au₁₆-Au₂₀) on TiO₂ supports were systematically investigated. We found that catalytic activities of the Au_n/TiO₂ systems increase with the size *n* up to Au₁₈, for which the hollow-cage Au₁₈ isomer exhibits highest activity for the CO oxidation, with a reaction rate

~30 times higher than that of Au_7/TiO_2 system. In stark contrast, the pyramidal isomer of Au_{18} exhibits much lower activity comparable to the Au_{3-4}/TiO_2 systems. Moreover, we found that the hollow-cage Au_{18} is robust upon the soft-landing with an impact velocity of 200 m/s to the TiO₂ substrate, and also exhibits thermal stability upon CO and O₂ co-adsorption. The larger pyramidal Au_{19} and Au_{20} clusters (on the TiO₂ support) display much lower reaction rates than the pyramidal Au_{18} . Results of rate of reactions for unsupported (gas-phase) and supported Au clusters can be correlated by a contour plot that illustrates the dependence of the reaction rates on the CO and O₂ adsorption energies. With the TiO₂ support, however, the catalytic activities can be greatly enhanced due to the weaker adsorption of CO on the TiO₂ support than on the Au clusters, thereby not only the ratio of O₂/CO adsorption energy and the probability for the O₂ to occupy the Ti sites are increased but also the requirement for meeting the critical line becomes weaker. The obtained contour plot not only can provide guidance for the theoretical investigation of catalytic activity on other metal cluster/support systems, but also assist experimental design of optimal metal cluster/support systems to achieve higher catalytic efficiency.

INTRODUCTION

Bulk gold is known to be catalytically inert for most heterogeneous reactions.¹ Amazingly, in 1987, Haruta et al. found that highly dispersed gold nanoparticles on a metal oxide support exhibit exceptional catalytic properties toward CO oxidation.² Since then, numerous experimental studies have shown that metal-oxide supported gold nanoparticles are active for numerous reactions, including CO oxidation,^{2–6} propylene epoxidation⁷ and the water-gas shift,^{8,9} etc. Most recently, Haruta and co-workers reported application of nanogold catalyst in gas masks for oxidization of toxic chemicals, in bathrooms for removal of odor compounds,¹⁰ or in vehicles for conversion of CO to CO₂.¹¹ However, limited understanding of the high catalytic activities of nanogold, particularly their size and shape dependence, still hampers optimal design and synthesis of cost-effective catalysts for large-scale application.¹²

To understand the fundamental mechanism of the high catalytic activity, extensive experimental and computational efforts have been made to explore the most active sites on oxide-supported gold nanoparticles as well as the size and shape dependence.^{6,13–16} For example, Haruta and co-workers reported that hemispherical Au particles perform better than spherical particles for catalyzing CO oxidation. They attributed this shape effect to the stronger interaction between the hemispherical gold nanoparticles and the underlying TiO₂

Received: October 10, 2013 Published: November 27, 2013

Journal of the American Chemical Society

support.⁶ Later, Goodman and co-workers observed that gold particles with 2–3 atomic layers and 2 nm in diameter exhibit the highest catalytic activities.¹⁶ More recently, supported gold clusters with 5–10 atoms have been shown to give extremely high catalytic activity, but the gold clusters with less (or more) atoms are somewhat inert toward the thiophenol oxidation.¹⁵ Theoretical studies have also shown that the CO oxidation is sensitive to the size of gold clusters, at least for the hollow-cage and pyramid gold clusters.^{17,18}

Besides the shape and the size dependence, the role of the oxide support has been intensively investigated since the gold clusters on a different support can exhibit different catalytic activities. To date, several factors have been proposed to explain high catalytic activity of the supported Au clusters, such as the chemical structure of the support (including the defects),^{6,8,19,20} charge transfer between Au clusters and the support, and the perimeter sites at the interface between Au clusters on reducible oxides are more active than irreducible oxides.²¹ However, with the discovery of high catalytic activity of supports seems not a critical factor.

It is commonly believed that the charge transfer between the gold clusters and the support can be strongly affected by the surface structure.²³⁻²⁵ Numerous experiments have shown that crucial species in gold catalysts are cationic gold atoms due to the formation of AuO_x or AuO(OH) phase.^{16,26-31} The existence of the cationic gold atoms in various systems is suggested to play an important role in the CO oxidation, such as in Au/Mg(OH) $_{2}$ ³¹ Au/MgO,^{26,27} Au/CeO $_{2}$ ³² Au/TiO $_{2}$ ²⁹ and Au/ α -Fe₂O₃³⁰ systems. On the other hand, defects on the support can lead to negatively charged Au clusters.^{33,34} Yoon et al. reported that negatively charged Au₈ clusters on oxygenvacancy F-centers of the MgO support are capable of catalyzing CO oxidation at the low temperature. In comparison, the clusters on the defect-free MgO surface are much less active.² More recently, Kim et al. performed DFT calculations and found that a supported Au₁₃ can be negatively charged on partially reduced CeO₂ and exhibit notable catalytic activities toward the CO oxidation.35

The perimeter sites at the Au-support interface have been also suggested as the most active sites for CO oxidation.^{36,37} Recently, Green et al. carried out a detailed experimental and theoretical study of the CO oxidation on the TiO₂ supported Au-nanowire. They revealed that at the perimeter sites the reaction barrier for the CO oxidation can be as low as ~0.16 eV.³⁷ Fujitani and Nakamura also indicated that the perimeter interface sites act as active sites at 320 K³⁸ and that at 400 K the turn over frequency (TOF) remains nearly constant, regardless of the mean diameter of Au clusters. The latter results suggest that mainly the surface sites of gold are responsible for the CO oxidation beyond 320 K. Goodman et al.¹⁶ devised a planar bilayer gold on the support such that the reactants cannot directly interact with the support due to the coverage of the bilayer gold. In this system, therefore, the bilayer gold rather than the TiO_2 is solely responsible to high catalytic activity.

Our theoretical study is motivated by a recent review where Haruta and co-workers addressed the importance of understanding the catalytic activity of subnanometer gold clusters with precisely controlled size and shape.³⁹ Although catalytic activities of subnanometer gold clusters in the gas phase have been investigated,^{40–43} few studies have addressed catalytic properties of the supported medium-sized gold clusters. In this study, we focus on the subnanometer clusters in the size range from Au_{16} to Au_{20} (cf. Figure 1) due to the dramatic structural

Figure 1. Optimized geometries of selected Au clusters: hollow-cages Au_{16}, Au_{17}, Au_{18-cage} and pyramidal Au_{18-pyrd}, Au_{19}, Au_{20}.

transition in this size range (at least in the gas phase). In particular, Au_{16} is known to be a magic-number cluster and exhibits hollow-cage structure when carrying a negative charge in the gas phase. Au_{20} is another magic-number cluster and exhibits highly symmetric pyramidal (compact) structures in both neutral and anionic states. Au_{18} is a crossover cluster because it exhibits two distinctive stable isomers, i.e., the hollow-cage (cage- Au_{18}) and pyramid (pyrd- Au_{18}) when carrying a negative charge.^{40,44} Another two gold clusters, Au_{17} and Au_{19} , exhibit hollow-cage and compact pyramidal structure, respectively. We show that the supported cage- Au_{18} exhibits higher catalytic activity than the pyrd- Au_{18} isomer due to the further enhanced O_2 adsorption onto the TiO₂ support.

Thus far, we are aware of only two previous theoretical studies that have reported detailed kinetic analysis of CO oxidation on Au sites, although all the Au sites were treated as equivalent sites.^{35,45} In this study, we not only present a detailed kinetics analysis of the catalytic activity, especially for the reaction occurring near the Au-support interface, but also remove the equivalent-site assumption and take into account different chemical environment of Au atoms (such as different charge states and local cone angles) which can affect the adsorption energy of reactants¹⁷ and yield site-dependent kinetics (e.g., reaction rate). We have also performed a comparative study of CO oxidation on Au_n/TiO₂ and the gas-phase Au_n. It shows that the catalytic activity can be greatly enhanced by a previously overlooked support effect, i.e., the weakened CO oxidation on the TiO₂ support can increase the ratio of O₂/CO adsorption energy, thereby lowering the requirement for meeting the critical line in the contour plot.

COMPUTATIONAL DETAILS

Structural Relaxation and CO Oxidation. The spin-unrestricted DFT (implemented in Dmol³ 4.3 package) is employed within generalized-gradient approximation (GGA) in Perdew-Burke-Ernzer-hof (PBE) form.^{46,47} The real-space global cutoff radius is set to be 4.0 Å and only the Γ k-point is considered. Double numerical plus polarization (DNP) basis set and semicore pseudopotential are used to treat atomic orbitals and core electrons, respectively.^{46,47} The transition-state search is performed using a combination of the linear and quadratic synchronous transit (LST/QST) method.^{48,49} To neglect the interaction among the cluster and its periodic images, two large supercells (5 \times 3 and 6 \times 3) with 20 Å vacuum are used for the simulations of the TiO2 supported cage-like and pyramidal Au clusters, respectively. The TiO₂ (110) slab has nine atomic layers, and the top-six atomic layers of TiO_2 are allowed to relax, while the bottom-three atomic layers are constraint to their lattice position. The convergence criteria for the geometrical optimization is 2×10^{-5} hartree for the energy change, 4×10^{-3} hartree/ Å for the gradient, and 5 \times 10⁻³ Å for the displacement.

Adsorption energies of specific molecules i (i = CO and O_2) on the TiO₂-supported clusters Au_n and adsorption energies of the Au clusters on the TiO₂ (110) slab are computed based on the following two formulas:

$$E_{\rm ad}^i = E_{i-{\rm Au}_n/{\rm TiO}_2} - E_{{\rm Au}_n/{\rm TiO}_2} - E_i$$
⁽¹⁾

$$E_{\rm ad}^{\rm Au} = E_{\rm Au_n/TiO_2} - E_{\rm Au_n} - E_{\rm TiO_2}$$
(2)

where $E_{Au_i} E_{TiO_2} E_i$ and E_{Au_n/TiO_2} are the total energies of optimized bare Au_n, TiO₂ slab (per supercell), molecule *i* and TiO₂-supported Au_n, respectively; E_{iAu_n/TiO_2} is the total energy of the optimized molecule/cluster/support system *i*-Au_n/TiO₂, where molecule *i* is adsorbed on Au_n/TiO₂. In addition, as shown in Scheme 1, the

Scheme 1. Definition of Perimeter Sites and Surface Sites of TiO₂-Supported Au Clusters

perimeter sites are defined to include Au atoms in the first or second Au layers next to TiO_2 as well as the five-fold Ti (Ti_{5f}) atoms near the Au-TiO₂ interface. Other Au atoms on the surface of Au clusters are viewed as surface sites.

Note that the Au or Ti sites for O_2 adsorption can be deactivated by the preoccupation of CO, thereby hindering the proceeding of the reaction. The competition of such inactive adsorption configuration is accounted for in the detailed microkinetics analysis (theoretical details are given in Part II of Supporting Information, SI). The adsorption energies of CO in the inactive adsorption configuration and O_2 in the active adsorption configuration (cf. equation 5 and 2 in Part II of SI, respectively) are denoted as $E_{ad}^{CO\ddagger}$ and $E_{ad}^{O,\ddagger}$, respectively. The O_2 coverage on the active sites is determined by the ratio of $E_{ad}^{O,\ddagger}$ to $E_{ad}^{CO\ddagger}$, referred to as the O_2/CO ratio. In other words, the O_2/CO ratio describes the capability of O_2 adsorption on either the active perimeter Ti_{sf} or the Au surface sites.

RESULTS AND DISCUSSION

Validation of the Method by Comparing with a Previous Experiment. To validate the theoretical method used in this study, we first examine catalytic activities of smallsized clusters Au₁₋₄ and Au₇ on TiO₂ (Au_{1-4, 7}/TiO₂) (cf. Figure 2) for which experimental measurement of the rate of CO oxidation was reported by Lee et al.⁵⁰ Our calculations show that CO oxidation on Au₁/TiO₂ and Au₂/TiO₂ encounters a relatively high barrier of 0.65 and 1.14 eV, respectively (see Figure 2a). The high reaction barrier renders the Au_{1-2}/TiO_2 systems inactive to CO oxidation at the room temperature, consistent with the experimental results. In stark contrast, the Au₃/TiO₂ model system gives the lowest reaction barrier (0.26 eV), followed by Au₇/TiO₂ and Au₄/TiO₂ systems. Based on the computed reaction barrier alone, Au₃/ TiO₂ is expected to exhibit the highest catalytic activity rather than Au7/TiO2, contrary to the experiment results.⁵⁰ Nevertheless, we notice that adsorption of O₂ is much stronger on Au₇/TiO₂ than on Au₃/TiO₂, indicating stronger capability to accommodate O_2 . Therefore, Au_7/TiO_2 is expected to be more active than Au₃/TiO₂. Indeed, the detailed microkinetic analysis shows that Au₇/TiO₂ yields the highest reaction rate (7.6×10^6) s^{-1}), followed by Au₃/TiO₂ and Au₄/TiO₂, whereas Au₁/TiO₂ and Au₂/TiO₂ are nearly inert due to negligible reaction rate

(see Figure 2b). The trend of catalytic activities predicted from the microkinetic analysis is in good agreement with experimental results,⁵⁰ confirming reliability of the kinetic analysis method used in this study.

CO Oxidation on TiO₂ Supported Hollow Cage Au₁₆, Au₁₇, Au₁₈ and Pyramidal Au₁₈, Au₁₉, Au₂₀. Au_{18-cage} and Au₂₀ are prototype models for the hollow-cage and the pyramidal Au clusters, respectively. To assess activity of Au_{18-cage}/TiO₂ and Au₂₀/TiO₂ systems, multiple reaction pathways associated with the Au-surface sites and perimeter sites are investigated (cf. Figures S2-S6, Table S1). As illustrated in Part I of SI, the perimeter sites of both Au_{18-cage}/TiO₂ and Au₂₀/TiO₂ systems are the active sites to promote CO oxidation (cf. Figure S3c,d), following a dualperimeter-site (DPS) mechanism. Here, CO adsorbed on the perimeter Au atom can be readily oxidized by the O₂ molecule adsorbed on the neighboring Ti_{sf} atom, and the reaction barrier is lower than 0.30 eV. As noted in Part I of SI, in the DPS mechanism, the bridge-adsorption configuration of the O_2 molecule is unfavorable because the nearest Au atom is occupied by the CO molecule.

To check if the DPS mechanism can be extended to other medium-sized Au clusters, we also examine CO oxidation on the $TiO_2(110)$ -supported Au₁₆, Au₁₇, Au_{18-pyrd}, and Au₁₉. For comparison, the most favorable reaction pathways on the hollow-cage and pyramidal Au clusters (on the TiO₂ support) are displayed in Figures 3 and 4, respectively. Interestingly, for the Au_{17}/TiO_2, Au_{18-pyrd}/TiO_2, and Au_{19}/TiO_2 systems, the corresponding reaction barriers (under the DPS mechanism) are all lower than 0.3 eV, whereas Au_{16}/TiO_2 system entails a much higher energy barrier (0.62 eV). For the Au_{16}/TiO_2 and Au₁₇/TiO₂ systems, CO adsorbs at the perimeter Au atoms with the adsorption energy of -0.56 and -0.45 eV, respectively, close to that for the Au_{18-cage}/TiO₂ system. However, distinctive O2 adsorption behavior is observed for the Au_{16}/TiO_2 system. As shown in the inset of Figure 3, adsorption of O₂ on the neighboring Ti_{5f} sites induces strong structural deformation of Au₁₆ cage due to the strong interaction between the adsorbed O_2 and the Au atoms (cf. middle insets in Figure 3). The induced structural deformation raises the reaction barrier for the crossover of TS1, even though the strong O-Ti interaction still yields a low-energy barrier for TS2. Hence, for Au_{16}/TiO_2 , the first step (TS1) is the ratedetermining step rather than the O-O scission step. Differently, for the Au_{17}/TiO_2 system, upon the adsorption of CO on the perimeter Au site and O_2 adsorption at the neighboring Ti_{sf} site, little structural deformation is induced. The energy barriers associated with TS1 and TS2 are 0.05 and 0.24 eV, respectively, comparable to those for the $Au_{18-cage}/TiO_2$ system. Thus, $Au_{17}/$ TiO₂ is expected to exhibit similar catalytic activities as $Au_{18-cage}/TiO_2$. In contrast, the perimeter sites in the $Au_{16}/$ TiO₂ system may be viewed as inactive to the CO oxidation compared to the other two hollow-cage Au clusters. Such distinctive size effect is mainly due to structural flexibility of the Au₁₆ cage.

Both Au₁₆ and Au₁₇ are hollow cages, while Au_{18-pyrd} and Au₁₉ are truncated pyramid. Thus, the TiO₂-supported Au_{18-pyrd} and Au₁₉ are expected to exhibit similar CO and O₂ adsorption behavior and more or less the same reaction barriers for CO oxidation. Indeed, as shown in Figure 4a,b, for Au_{18-pyrd}⁻ and Au₁₉-TiO₂ systems, CO adsorption on Au surface sites near the interface results in similar adsorption energy, -0.74 and -0.75 eV. Moreover, the neighboring Ti_{5f} sites can adsorb O₂

Figure 2. (a) Energy profile for CO oxidation on the TiO₂ supported Au₁₋₄ and Au₇. The reaction barrier (eV) for the rate-limiting step is given for Au₁₋₄ and Au₇ and the corresponding configuration in the initial state is shown in the insets. The symbol '*' refers to the atom or molecule or the intermediate being adsorbed on either the Au-cluster or the TiO₂ support. (b) Calculated reaction rates for different Au_n/TiO₂ systems (n = 1-4 and 7).

with nearly the same adsorption energy (-0.07 eV), in line with the experimentally characterized adsorption energy (-0.08 eVfor O₂).⁵¹ Upon the coadsorption of CO and O₂, the reaction encounters two reaction barriers whose heights are ~0.10–0.12 and ~0.28–0.29 eV for crossing the **TS1** and **TS2**, respectively. Hence, the adsorption of CO and O₂ on the perimeter sites of the Au_{18-pyrd}/TiO₂ and the Au₁₉/TiO₂ results in comparable adsorption energies as for Au₂₀/TiO₂. Moreover, the comparison of the two pathways for CO oxidation shows that the associated reaction barriers never exceed 0.30 eV for the two supported pyramidal Au_n.

In summary, the Au₁₆–TiO₂ interface results in a much higher reaction barrier of 0.62 eV due to the structural deformation. However, the reaction barriers below 0.3 eV are characterized as the TiO₂ supported Au₁₇, Au_{18-cage}, Au_{18-pyrd}, Au₁₉, and Au₂₀. It seems the catalytic activities of the supported subnanometer Au clusters are not critically dependent on the structure and size of Au clusters except Au₁₆. However, besides reaction barriers, CO and O₂ coverage is another important factor to affect the reaction rate of CO oxidation.

Size and Shape Dependence of the TiO₂-Supported Au_n (n = 1-4, 7, and 16–20). The computed reaction rates and associated parameters for CO oxidation on Au₁₆₋₂₀/TiO₂ systems are listed in Table 1. As expected, Au₁₆/TiO₂ yields the lowest reaction rate due to the high reaction barrier (0.62 eV). Moreover, the reaction rates computed for Au₁₇₋₂₀/TiO₂ systems seem more closely related to the adsorption energy ratio of O₂ to CO, in view of their small difference in reaction barrier (less than 0.05 eV). In Figure 5, the reaction rates versus the size of Au clusters for the Au_n/TiO_2 systems (n = 3, 4, 7,and 16-20) are plotted. Except the Au₁₆/TiO₂ system, the reaction rate increases with the size of the Au clusters considered up to n = 18. The two smallest clusters, Au₁/ TiO_2 and Au_2/TiO_2 , are incapable of catalyzing CO oxidation at room temperature. The reaction rate for the Au_{17}/TiO_2 system is ~4 times higher than the Au_7/TiO_2 system, while the $Au_{18-cage}/TiO_2$ system yields ~30 times higher reaction rate than Au_7/TiO_2 system. Hence, $Au_{18\text{-cage}}/TiO_2$ is the most active catalyst among systems considered in this study. As a demonstration of the shape effect, the Au_{18-pyrd}/TiO₂ system gives much lower reaction rate than the $\mathrm{Au}_{\mathrm{18-cage}}/\mathrm{TiO}_{\mathrm{2}}$ system

Figure 3. Computed most favorable reaction pathways for the CO oxidation at perimeter sites of hollow-cage Au_n/TiO_2 systems: (a) Au_{16}/TiO_2 (black lines), (b) Au_{17}/TiO_2 (blue lines), (c) $Au_{18-cage}/TiO_2$ (red lines). The reaction barrier (eV) for the rate-limiting step is given for (a–c), and the corresponding configuration in the initial state is shown in the lower insets. The middle insets illustrate the structural deformation of Au_{16} on the TiO₂ surface. The symbol * refers to the atom or molecule or the intermediate being adsorbed on either the Au-cluster or the TiO₂ support.

Figure 4. Computed most favorable reaction pathways for the CO oxidation at perimeter sites of pyramidal Au_n/TiO_2 systems: (a) $Au_{18-pyrd}/TiO_2$ (black lines), (b) Au_{19}/TiO_2 (blue lines), (c) Au_{20}/TiO_2 (red lines). The reaction barrier (eV) for the rate-limiting step is given for (a–c), and the corresponding configuration in the initial state is shown in the lower insets. The upper inset (top view) illustrates configuration in pathway (c) (red lines). The symbol * refers to the atom or molecule or the intermediate being adsorbed on either the Au-cluster or the TiO₂ support.

(see Figure 5). In fact, the reaction rate for the Au_{18-pyrd}/TiO₂ is even lower than that of Au₄/TiO₂. On the other hand, for the slightly larger pyramidal clusters Au₁₉ and Au₂₀, the reaction rates become lower than the Au_{18-pyrd}/TiO₂, demonstrating the importance of the size effect. These results also reveal that the supported hollow-cage Au clusters are more active than the pyramidal Au clusters. In summary, for the supported mediumsized Au clusters, the catalytic activities increase with the size of Au clusters until n = 18 where the cage-to-pyramidal structure transformation occurs. Careful examination of the adsorption energy ratio of O_2 to CO (see Table 1) indicates that the enhancement of reaction rates on the supported hollow-cage Au clusters (Au₁₇/TiO₂ and Au₁₈/TiO₂) appears due to the increase of the O₂/CO ratio. As seen in Table 1, except the special case of Au₁₆/TiO₂, Au_{18-cage}/TiO₂ gives rise to the highest O₂/CO ratio (0.75), which leads to the highest O₂ coverage (~0.016) and reaction rate. In contrast, much lower O₂ coverage on TiO₂ is seen for pyramidal-Au_n/TiO₂ due to very low O₂/CO ratio, hence much lower reaction rate. The Au₂₀/TiO₂ system gives rise to the lowest O₂/CO ratio (~0.07), hence the lowest reaction rate.

Table 1. Computed Reaction Barriers of CO Oxidation at TS1 (E_a^{TS1}) and TS2 (E_a^{TS2}) , Adsorption Energies of CO on the Perimeter Au Sites (E_{ad}^{CO}) and the Perimeter Ti_{5f} Sites $(E_{ad}^{CO\ddagger})$, the Adsorption Energies of O₂ on the Perimeter Ti_{5f} Sites $(E_{ad}^{O_2\ddagger})$, the O₂/CO Ratio of Adsorption Energy, O₂ Coverage $(\theta_{O_2\ddagger})$, and the Maximum Reaction Rates (R_1) on the Au_n/TiO₂ Systems^{*a*}

	Au _n	$E_{\rm a}^{ m TS1}$	$E_{\rm a}^{ m TS2}$	$E_{ m ad}^{ m CO}$	$E_{ m ad}^{ m CO}$	$E_{ m ad}^{ m O_2 \ddagger}$	O_2/CO	$ heta^{\ddagger}_{\mathrm{O}_2}$	R_{1}, s^{-1}
cage	Au ₁₆	0.62	0.29	-0.56	-0.42	-0.69	1.64	9.89×10^{-1}	2.1×10^{2}
	Au ₁₇	0.05	0.24	-0.45	-0.43	-0.14	0.33	4.66×10^{-4}	2.7×10^{7}
	Au _{18-cage}	0.10	0.26	-0.41	-0.40	-0.30	0.75	1.63×10^{-2}	$2.2 imes 10^8$
pyramid	Au _{18-pyrd}	0.10	0.29	-0.74	-0.43	-0.07	0.16	3.28×10^{-6}	4.1×10^{5}
	Au ₁₉	0.12	0.28	-0.75	-0.42	-0.06	0.14	3.28×10^{-6}	1.3×10^{5}
	Au ₂₀	0.13	0.28	-0.67	-0.44	-0.03	0.07	4.71×10^{-7}	1.9×10^{4}
			1						

^{*a*}The energy is in the unit eV, and the rate unit s^{-1} represents molecule per second.

Figure 5. Calculated reaction rates (in logarithm value) versus the size of supported Au clusters for the Au_n/TiO_2 systems. The low reaction rate for Au_{16}/TiO_2 (a special case) is largely due to the strong structural deformation upon O_2 and CO adsorption.

We conclude that the weaker capability to accommodate O_2 for the pyramidal-Au_n/TiO₂ is responsible for their lower reaction rates, compared to the hollow-cage clusters.

To understand the origin of enhanced O_2 adsorption on hollow-cage-Au_n/TiO₂, we compute the molecular orbitals of the Au_n/TiO₂ systems upon the coadsorption of CO and O_2 and find that the stronger O_2 adsorption at the hollow-cage-Au_n-TiO₂ interface is attributed to the *d*- π orbital interaction between O_2 molecule and Au atom. As shown in Figure 6, for the hollow-cage-Au_n/TiO₂ systems, the adsorbed O_2 molecule leans to the Au clusters and interacts with the Au clusters through the overlap of $O_2 \pi$ orbital and the Au *d* orbital. However, such *d*- π orbital overlap is not available for the pyramid-Au_n/TiO₂ systems. Thus, the *d*- π orbital interaction enables the stronger adsorption of O_2 at the hollow-cage-Au_n-TiO₂ interface, thereby increasing the O_2/CO ratio.

Born–Oppenheimer Molecular Dynamics Simulation of Soft-Landing on the TiO₂(110) Surface and Thermal Stability Test of Hollow-Cage Au₁₈ upon the Adsorption of CO and O₂. To examine stability of the Au_{18-cage}/TiO₂ system during the soft-landing process and upon the adsorption of CO and O₂, we perform a Born–Oppenheimer molecular dynamics (BOMD) simulation using the CP2K code.⁵² The BOMD simulation is based on DFT in the form of PBE functional⁵³ and a mixed Gaussian and plane-wave (GPW) basis set with the Goedecker–Teter–Hutter (GTH) pseudopotential^{54,55} adopted to describe the interaction between valence electrons and atomic cores. The plane-wave energy cutoff is 80 Ry. A relative large supercell (6 × 3) with vacuum distance of 15 Å is used so that the interactions among the cluster and its periodic images can be neglected. The supercell

Figure 6. The fourth highest occupied molecule orbital (HOMO-4) for the coadsorbed CO and O₂ (at the initial state and under the DPS mechanism) on the Au_n/TiO₂ systems: (a) Au₁₆/TiO₂, (b) Au₁₇/TiO₂, (c) Au_{18-cage}/TiO₂, (d) Au_{18-pyrd}/TiO₂, (e) Au₁₉/TiO₂, (f) Au₂₀/TiO₂. The isosurface is set to be 0.015 $e/Å^3$. More molecular orbitals are displayed in Figure S8.

contains a (110)-terminated rutile TiO₂ slab (17.80 × 19.49 Å) with 12-atomic layers where the top-six atomic layers are free to relax during the simulation, while all atoms in the bottom-six atomic layers are fixed to their lattice position. Structures of Au clusters and TiO₂(110) surface are fully relaxed prior to the MD simulation. For the soft-landing simulation, the constant-energy and constant-volume (NVE) ensemble is selected with a time step of 1.0 fs, while for examining the thermal stability, the constant-temperature and constant-volume (NVT) ensemble is used with the temperature being controlled at 125 and 298 K, respectively.

In the soft-landing simulation, the Au_{18-cage} cluster is initially placed 5.0 Å above the TiO₂(110) surface so that there is only weak dispersion interaction between the Au cluster and the TiO₂(110) surface. The initial relative velocity between the center of mass of the gold cluster and the TiO₂ substrate is ~200 m/s (corresponding to ~0.1 eV/atom, unit conversion refers to Sec. 3 in Part I of SI). Snapshots of the soft-landing at different time steps are shown in Figure 7a, while the full BOMD trajectory is shown in Movie S1. The Au_{18-cage} starts to collide with the TiO₂ surface at ~1.4 ps and is bounced backward at ~2.8 ps. During the collision, the interconversion between the kinetic energy and internal energy is seen (Figure S9), and the overall hollow-cage structure of Au₁₈ exhibits little change, suggesting that the hollow-cage structure of Au₁₈ is

Figure 7. Snapshots of BOMD simulation at different time steps for (a) $Au_{18-cage}$ soft-landing onto $TiO_2(110)$ surface and (b) $Au_{18-cage}/TiO_2$ system at 125 K (middle images) and 298 K (bottom images).

Table 2. Computed Reaction Barriers of CO Oxidation at TS1 (E_a^{TS1}) and TS2 (E_a^{TS2}) , Adsorption Energies of CO on the Au Sites (E_{ad}^{CO}) and Neighboring Au Sites $(E_{ad}^{CO\ddagger})$, Adsorption Energies of O₂ $(E_{ad}^{O_2\ddagger})$, the O₂/CO Ratio, Maximum Reaction Rates (R_1) , and Rescaled Reaction Rates (R_2) on the Gas-Phase Au_a^a

	Au _n	$E_{\rm a}^{ m TS1}$	$E_{\rm a}^{ m TS2}$	$E_{\rm ad}^{\rm CO}$	$E_{\rm ad}^{\rm CO \ddagger}$	$E_{ m ad}^{ m O_2 \ddagger}$	O ₂ /CO	R_{1}, s^{-1}	R_2, s^{-1}
cage	Au ₁₆	0.34	0.80	-0.96	-0.96	-0.06	0.06	5.4×10^{-12}	6.9×10^{-4}
	Au ₁₇	0.40	0.19	-1.09	-0.60	-0.08	0.13	1.6×10^{-2}	8.3×10^{2}
	Au _{18-cage}	0.27	0.28	-0.95	-0.87	-0.20	0.23	7.1×10^{-3}	7.9×10^{1}
pyramid	Au _{18-pyrd}	0.35	0.56	-1.16	-1.02	-0.22	0.22	1.2×10^{-7}	3.4×10^{-2}
	Au ₁₉	0.06	0.23	-0.84	-0.84	-0.3	0.36	3.9×10^{3}	8.3×10^{2}
	Au ₂₀	0.12	0.44	-0.80	-0.70	-0.06	0.10	8.7×10^{-3}	1.7×10^{1}
^{<i>a</i>} The energy is	in the unit eV.								

highly robust. Hence, in the realistic soft-landing experiment, even at a high impact velocity of ~200 m/s (or ~0.1 eV/atom), it is most likely that the Au₁₈-cage can still retain its gas-phase hollow-cage structure in the course of the collision. More surprisingly, for the pyramidal Au₂₀ cluster, a recent experiment demonstrates that the overall high-symmetry structure can be retained even at the impact energy of 3 eV/atom.⁵⁶ So both Au_{18-cage} and pyramidal Au₂₀ clusters are expected to maintain their gas-phase global-minimum structures upon deposition to the TiO₂(110) surface.

Figure 7b displays snapshots at different time steps of BOMD simulation for which two different temperatures are considered, 125 and 298 K. In both simulations (each for 15 ps), the Au_{18-cage} can retain the initial hollow-cage structure without showing major structure deformation. The calculated radial distribution function of Au-Au distance is shown in Figure S10a, where two peaks located at 2.85 and 4.80 Å can be seen. The first peak corresponds to the Au-Au bond length, while the second peak corresponds to the distance between the secondary nearest Au atoms. The calculated radial distribution function of C-O distance (cf. Figure S10b) exhibits a sharp peak at 1.37 Å, indicating the formation of the OC*OO* intermediate as shown in the snapshots (Figure 7b). The CO₂ formation is not observed within 15 ps of BOMD simulation, due to relatively high reaction barrier ($\sim 0.26 \text{ eV}$) in the O–O scission step. In summary, the $Au_{18-cage}/TiO_2$ system is predicted to be the most active for the CO oxidation, and

the hollow-cage structure is little changed upon CO and O_2 adsorption at the room temperature.

Effect of the TiO₂ (110) Support. To examine the effect of TiO₂ support, we investigate CO oxidation on the gas-phase Au_n and present the calculation results in Table 2. The computed reaction barriers on the gas-phase Au_n (including Au_{16} , Au_{17} , $Au_{18-pyrd}$, and Au_{20}) are mostly consistent with those reported previously.^{17,45} For $Au_{18-cage}$ and Au_{19} , we find that the two Au-O linkages (TAOL) mechanism is more favorable as it gives lower barriers than those reported previously¹⁷ (see Figure S11 for details). The maximum reaction rates R_1 stemming from the gas-phase Au, are also given in Table 2. For convenience of discussion, we rescale the reaction rates for gas-phase Au_n according to adsorption energy of CO and O_2 on each cluster, but using the same reaction barrier that were computed from the $\mathrm{Au}_{\mathrm{18-cage}}\text{-}\mathrm{TiO}_{\mathrm{2}}$ system under the DPS mechanism (cf. Table 2). The rescaled reaction rates are named as R_2 (Table 2) and plotted in Figure 8a. With this scaling, the increase or decrease of R_2 relative to R_1 can be simply attributed to the change of reaction barrier, while the rate difference between R_2 associated with the gas-phase Au_n (open squares in Figure 8a) and R_2 associated with the supported Au_n (red circle in Figure 8a) can be mainly attributed to the O_2/CO ratio.

As shown in Figure 8b, the hollow-cage Au₁₇ and Au₁₈, when deposited onto the TiO₂ support, give rise to a higher O₂/CO ratio than the corresponding gas-phase Au_n. Hence, the reaction rates associated with the Au₁₇/TiO₂ and Au_{18-cage}/TiO₂ are much higher than the rescaled reaction rates R_2 associated with

Figure 8. (a) Calculated reaction rates for different Au_n/TiO_2 (red lines) systems and gas-phase clusters Au_n (black lines). Note that R_1 and R_2 represent the actual and rescaled reaction rates on the gas-phase Au_n , respectively. The increment of R_2 relative to R_1 is due to the lowered reaction barriers E_a , while the O_2/CO ratio accounts for the rate difference in R_2 between the gas-phase Au_n and on Au_n/TiO_2 . (b) Computed adsorption-energy ratio of O_2 to CO on the TiO_2 support for different Au_n/TiO_2 (open circle) and the gas-phase Au_n (black square) systems (left axis). Computed reaction rates (red circles) associated with different Au_n/TiO_2 systems are also shown (right axis) for demonstrating correlation between the rates and the adsorption-energy ratios.

the corresponding gas-phase Au,. Furthermore, the Au-TiO₂ interface can provide active sites with lower reaction barriers, which would render R_2 higher than R_1 . The higher reaction rates associated with the hollow-cage-Au_n/TiO₂ systems compared to the gas-phase counterparts can be attributed to two factors: lower reaction barrier and increased O₂/CO ratio. However, for the pyramidal Au clusters, the lowered reaction barrier and increased O₂/CO ratio are not sufficient to account for the high catalytic activity upon deposition onto TiO₂ support. As shown in Table 2, the gas-phase Au₁₉ itself already has an exceptionally high reaction rate 3.9×10^{3} s⁻¹, compared to other gas-phase Au_n . The exceptionally high reaction rate actually stems from the unique triangle Au sites on the truncated pyramidal corner as reported by Liu et al.45 Such triangle sites can effectively decrease the reaction barrier to \sim 0.23 eV, which is even lower than typical barriers associated with the Au_n/TiO₂ systems. Moreover, such triangle sites can adsorb O_2 stronger, thus leading to the O_2/CO ratio (0.357) notably greater than that associated with the TiO₂ supported Au₁₉. Similarly, as shown in Figure 9b, both the gas-phase Au_{18-pvrd} and Au₂₀ are supposed to give higher rescaled reaction

Figure 9. (a) Contour plot of reaction rates versus $CO(E_{ad}^{CO^{\pm}})$ and $O_2(E_{ad}^{O,\pm})$ adsorption energy. Open squares and black triangles and stars represent reaction rates on the gas-phase Au_n, pyramid-Au_n/TiO₂ and hollow-cage-Au_n/TiO₂, respectively. The dashed-dotted pink line refers to the designated critical line for which the reaction rate corresponds to 10° s⁻¹. The dark-blue region refers to an unfavorable region where the weak adsorption of CO and O₂ would lead to high reaction barriers. (b) The difference between the actual O₂ adsorption energy $(E_{ad}^{O,\pm})$ and the corresponding value taken from the critical line $(E_c^{O,\pm})$ for the gas-phase Au_n and Au_n/TiO₂ (n = 18-pyrd, 19, and 20) systems. Here, the value of $E_c^{O,\pm}$ is taken from the cross-point between the critical line (pink line in (a)) and the vertical line drawing from the interested point (e.g., an open square for gas-phase Au_n).

rates (R_2) because both show higher O_2/CO ratio than the corresponding supported Au_n . However, much lower reaction rates are obtained. Hence, further investigation is needed to understand effect of the TiO₂ support, which can lead to unexpected enhancement of catalytic activity of Au_n/TiO_2 (see below).

To gain more insights into the TiO₂-support effect, we depict a contour plot of reaction rates in logarithm versus CO and O₂ adsorption energy, as shown in Figure 9a. Note that the reaction rates in the contour plot are scaled (using the same reaction barrier for Au_{18-cage}/TiO₂) as described for the calculation of R_2 . In Figure 9a, the reaction rates can be illustrated using four color schemes: blue (<-1.52), green (-1.52 to 4.00), yellow (4.00 to 6.00), and red (>6.00). The gas-phase Au_n is located at the blue or green region, whereas the pyramid-Au_n/TiO₂ and hollow-cage-Au_n/TiO₂ are located in yellow and red regions, respectively. Such a schematic plot illustrates the trend of catalytic activities as discussed above.

Different strategies are required to achieve high reaction rates for the gas-phase and the supported Au clusters, since they have distinctive CO adsorption energies. As shown in Figure 9a, at the boundary between the yellow and red region, a pink dashdotted line is defined as the critical line on which the reaction rate reaches to a critical value $R_c = 10^6 \text{ s}^{-1}$. Such reaction rates are comparable to those for the Au_{3,4}/TiO₂ and Au₇/TiO₂ systems, which have been experimentally measured. Using this critical line as a benchmark, we find that for a given CO adsorption energy value, the O₂ adsorption energy must reach a certain value to meet the critical line so that the reaction rate can be greater than R_c . Such a required O₂ adsorption energy is designated as a critical adsorption energy of O₂ ($E_c^{O_2}$).

For the gas-phase Au_n, the adsorption energy of O_2 is far from meeting the critical line (Figure 9a). In other words, the O_2/CO ratio is too small to meet the critical line, thus resulting in low reaction rates. For example, CO is adsorbed onto the gas-phase Au₁₉ with the adsorption energy -0.84 eV. Such adsorption energy requires the O₂/CO ratio of 0.60. However, the O₂/CO ratio for gas-phase Au₁₉ is ~0.36, much smaller than the required O₂/CO ratio, hence resulting in much lower reaction rates despite of the low reaction barrier compared to the Au₁₉/TiO₂. Likewise, for another two gas-phase pyramidal Au_n, Au_{18-pyrd}, and Au₂₀, the required O₂/CO ratios are as high as 0.68 and 0.53 due to the adsorption energy of CO being -1.02 and -0.70 eV, respectively. Nevertheless, the O₂ adsorption energy. Hence, the O₂/CO ratio (0.22 for Au_{18-pyrd} and 0.10 for Au₂₀) is too low to reach the critical line, thus resulting in small reaction rates.

However, for the Au_n/TiO₂ system, CO adsorption energy on the TiO₂ surface decreases to ~ -0.43 eV. The required O₂/ CO ratio for meeting the critical line drops to \sim 0.23, which can be achieved when the O_2 adsorption energy is as low as -0.10eV. Although the O₂/CO ratio for pyramid-Au_n/TiO₂ is smaller than that for gas-phase Au_n (cf. Figure 7b), the difference between $(E_{ad}^{O_2 \ddagger})$ and $(E_c^{O_2})$ is much smaller than that on the gas-phase Au_n due to the greatly reduced $E_c^{O_2}$, (Figure 9b), thus leading to higher reaction rates compared to the gas-phase Au_n. Furthermore, for the hollow-cage Au_{17}/TiO_2 and $Au_{18-cage}/$ TiO₂, the d- π orbital interaction between the adsorbed O₂ and Au clusters strengthen the adsorption of O₂, and thus they can accommodate O_2 with the adsorption energy -0.14 and -0.30eV, respectively. The stronger O₂ adsorption relative to the required value enables meeting of the critical line as indicated in the contour map. Therefore, much higher reaction rates are expected for the Au_{17}/TiO_2 and $Au_{18-cage}/TiO_2$ systems compared to the gas-phase Au_n .

In summary, the TiO_2 support not only provides the active perimeter sites, but also lowers the requirement condition to meet the critical line.

CONCLUSION

We have studied the CO oxidation on the hollow-cage (Au_{16} , Au₁₇, Au_{18-cage}) and the pyramidal (Au_{18-pyrd}, Au₁₉, Au₂₀) Au clusters with and without the TiO_2 (110) support. Our systematical study indicates that the perimeter sites of Aucluster/TiO₂ can significantly promote the CO oxidation. The peripherally adsorbed CO at a perimeter Au site can readily interact and react with a dangling O2 on the neighboring Tisf site. Such a dual-perimeter-site mechanism typically results in a reaction barrier <0.3 eV for most supported Au clusters considered in this study, except Au_{16}/TiO_2 . For the Au_{16}/TiO_2 , the flexible cage structure tends to deform upon molecular adsorption, which raises the reaction barrier and renders the dual-perimeter-site mechanism unfavorable. To compare with previous experimental measurements, we have also examined catalytic activities of small-sized clusters Au₁₋₄/TiO₂ and Au₇/ TiO₂ under the DPS mechanism. We find that the trend of activities predicted is in good agreement with the experimental one. Overall, the computed reaction rates for the Au_n/TiO₂ systems can be sensitively dependent on the size and shape of the supported Au clusters. As an example, for Au₁₈ with both hollow-cage and pyramidal isomers, the cage isomer exhibits much higher catalytic activity than the pyramidal isomer largely because the second-layer Au atoms of the cage isomer (above the TiO₂ support) can enhance the adsorption of O_2 via the $d-\pi$ orbital interaction on perimeter Ti sites. This enhancement increases the ratio of O_2/CO adsorption energy, thereby the reaction rate.

More importantly, a schematic and useful contour plot of reaction rates is obtained from this comprehensive study. This contour plot can be used as guidance to predict optimal adsorption condition for CO and O₂ to achieve high reaction rates. In the contour plot, a critical line corresponding to the reaction rate of $R_c = 10^6/s$ is designated as a benchmark to determine optimal adsorption condition for CO and O₂ on the Au clusters or TiO₂ support. For a given value of CO adsorption energy, the O_2 adsorption must be strong enough so that the critical line can be met to achieve the reaction rate $>R_c$ = 10^6 /s. Without the TiO₂ support, the O₂ adsorption is typically weaker than the CO adsorption on the Au clusters (i.e., the ratio of O_2/CO adsorption energy is very low) so that the system cannot satisfy the condition for meeting the critical line. We find that the TiO₂ support can lower the requirement for the minimum value of O₂ adsorption energy to achieve high reaction rate due to the reduced CO adsorption energy on the perimeter Ti_{5f} sites (or increases the ratio of O₂/CO adsorption energy), in addition to the availability of active sites at the Au-TiO₂ interface. Finally, we expect that this contour plot approach is more generic and can be extended to analyze catalytic activities of other metal clusters/support systems.

In conclusion, we have systematically studied the size and shape dependence of catalytic properties of Au_n/TiO_2 system. We find that the TiO₂ substrate not only provides the active sites but also enhances the probability for the O₂ to occupy the Ti sites, thereby improving the catalytic activities for CO oxidation. The hollow-cage Au_{18} supported by TiO₂(110) surface is predicted to be most active among the gold clusters considered for CO oxidation. Moreover, we find that the hollow-cage Au_{18} exhibits good stability during soft-landing process and thermal stability upon CO and O₂ coadsorption. Lastly, the obtained contour plot not only can provide guidance for the theoretical investigation of catalytic activity on other metal cluster/support systems, but also assist experimental design of optimal metal cluster/support systems to achieve higher catalytic efficiency.

ASSOCIATED CONTENT

Supporting Information

Detailed discussion about CO oxidation on Au_{18-cage}/TiO₂ and Au₂₀/TiO₂, including E-R and L-H mechanisms, a comparison of TAOL and SAOL mechanisms on the Au surface sites of Au_{18-cage}/TiO₂, computed reaction pathways and the variation of the bond length during CO oxidation at different perimeter sites and the removal of the second O atom, temperature and Kohn–Sham energy evolution and full-trajectory movie for Au_{18-cage} soft-landing onto TiO₂ surface, radial distribution functions of Au–Au distance and C–O distance from BOMD simulation of the Au_{18-cage}/TiO₂ with the coadsorption of CO and O₂ at 125 and 298 K, the TAOL mechanism on the gas-phase Au_{18-cage} and gas-phase Au₁₉, unit conversion for softlanding speed, and the detailed microkinetic analysis. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors xzeng1@unl.edu

ypnku78@gmail.com

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Y.G. is supported by a startup fund from SINAP (Y290011011), the National Natural Science Foundation of China (21273268), "Pujiang Rencai Project" from STCSM (13PJ1410400) and "Hundred People Project" from Chinese Academy of Sciences. Y.P. is supported by Hunan Provincial Natural Science Foundation of China (12JJ7002, 12JJ1003) and Natural Science Foundation of China (grant no. 21103144, 21373176) and Scientific Research Fund of Hunan Provincial Education Department (13A100). Z.F.C. and X.C.Z. are supported by NSF (EPS-1010674 and EPS-1010094), and X.C.Z. is also supported by grant from ARL (W911NF1020099), and by University of Nebraska Holland Computing Center and the Center for Functional Nanomaterials (CFN) Theory and Computation Facility in Brookhaven National Laboratory (Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886).

REFERENCES

- (1) Hammer, B.; Norskov, J. K. Nature 1995, 376, 238-240.
- (2) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 405–408.
- (3) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647– 1650.
- (4) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Catal. Today 1989, 115, 8.
- (5) Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Nature 2009, 458, 746-749.
- (6) Fujikia, H.; Yamada, N.; Chijiiwaa, T.; Araia, S.; Tsubotab, S.; Haruta, M. *Catal. Today* **1997**, *36*, 9.
- (7) Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566-575.
- (8) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Andreeva, D.; Tabakova, T. *J. Catal.* **1999**, *188*, 176–185.
- (9) Williams, W. D.; Shekhar, M.; Lee, W. S.; Kispersky, V.; Delgass,
 W. N.; Ribeiro, F. H.; Kim, S. M.; Stach, E. A.; Miller, J. T.; Allard, L.
 F. J. Am. Chem. Soc. 2010, 132, 14018–14020.
- (10) Ikegami, M.; Matsumoto, T.; Kobayashi, Y.; Jikihara, Y.; Nakayama, T.; Ohashi, H.; Honma, T.; Takei, T.; Haruta, M. *Appl. Catal., B* **2013**, *134*, 130–135.
- (11) Peplow, M. Nature 2013, 495, S10-S11.
- (12) Gates, B. C. Chem Commun (Cambridge, U. K.) 2013, 49, 7876–7877.
- (13) Shekhar, M.; Wang, J.; Lee, W. S.; Williams, W. D.; Kim, S. M.; Stach, E. A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. *J. Am. Chem. Soc.* **2012**, *134*, 4700–4708.
- (14) Tong, X.; Benz, L.; Kemper, P.; Metiu, H.; Bowers, M. T.; Buratto, S. K. J. Am. Chem. Soc. 2005, 127, 13516–13518.
- (15) Corma, A.; Concepcion, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; Lopez-Quintela, M. A.; Buceta, D.; Mendoza, E.; Guilera, G. *Nat. Chem.* **2013**, *5*, 775–781.
- (16) Chen, M. S.; Goodman, D. W. Science **2004**, 306, 252–255. (17) Gao, Y.; Shao, N.; Pei, Y.; Chen, Z. F.; Zeng, X. C. ACS Nano
- (17) Gao, 1.; Shao, N.; Fei, 1.; Chen, Z. F.; Zeng, X. C. ACS Wind 2011, 5, 7818–7829.
- (18) Gao, Y.; Shao, N.; Bulusu, S.; Zeng, X. C. J. Phys. Chem. C 2008, 112, 8234–8238.
- (19) Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. *J. Catal.* **2001**, *197*, 113–122.
- (20) Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. J. Am. Chem. Soc. 2006, 128, 917–924.

- (21) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. **1993**, *144*, 175–192.
- (22) Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Nature **2008**, 454, 981–984.
- (23) Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. Gold Bull. 2004, 37, 72–124.
- (24) Yoon, B.; Hakkinen, H.; Landman, U.; Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. *Science* **2005**, *307*, 403–407.
- (25) Remediakis, I. N.; Lopez, N.; Norskov, J. K. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.
- (26) Guzman, J.; Gates, B. C. Angew. Chem., Int. Ed. 2003, 42, 690–693.
- (27) Guzman, J.; Gates, B. C. J. Am. Chem. Soc. 2004, 126, 2672–2673.
- (28) Daniells, S. T.; Overweg, A. R.; Makkee, M.; Moulijn, J. A. J. Catal. 2005, 230, 52–65.
- (29) Boyd, D.; Golunski, S.; Hearne, G. R.; Magadzu, T.; Mallick, K.; Raphulu, M. C.; Venugopal, A.; Scurrell, M. S. *Appl. Catal., A* **2005**, 292, 76–81.
- (30) Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A.; Fierro-Gonzalez, J. C.; Guzman, J.; Gates, B. C. *J. Catal.* **2006**, *242*, 71–81.
- (31) Kobayashi, Y.; Nasu, S.; Tsubota, S.; Haruta, M. Hyperfine Interact. 2000, 126, 95–99.
- (32) Guzman, J.; Carrettin, S.; Corma, A. J. Am. Chem. Soc. 2005, 127, 3286–3287.
- (33) Chen, M. S.; Goodman, D. W. Acc. Chem. Res. **2006**, *39*, 739–746.
- (34) Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Norskov, J. K. *J. Catal.* **2004**, *223*, 232–235.
- (35) Kim, H. Y.; Lee, H. M.; Henkelman, G. J. Am. Chem. Soc. 2012, 134, 1560–1570.
- (36) Haruta, M. Catal. Today 1997, 36, 153-166.
- (37) Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Science 2011, 333, 736–739.
- (38) Fujitani, T.; Nakamura, I. Angew. Chem., Int. Ed. 2011, 50, 10144–10147.
- (39) Takei, T.; Akita, T.; Nakamura, I.; Fujitani, T.; Okumura, M.; Okazaki, K.; Huang, J. H.; Ishida, T.; Haruta, M. *Adv. Catal.* **2012**, *55*, 1–126.
- (40) Huang, W.; Bulusu, S.; Pal, R.; Zeng, X. C.; Wang, L. S. ACS Nano 2009, 3, 1225–1230.
- (41) Bulusu, S.; Zeng, X. C. J. Chem. Phys. 2006, 125, 154303.
- (42) Pal, R.; Wang, L. M.; Pei, Y.; Wang, L. S.; Zeng, X. C. J. Am. Chem. Soc. 2012, 134, 9438–9445.
- (43) Huang, W.; Bulusu, S.; Pal, R.; Zeng, X. C.; Wang, L. S. J. Chem. Phys. 2009, 131, 234305.
- (44) Bulusu, S.; Li, X.; Wang, L. S.; Zeng, X. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8326–8330.
- (45) Liu, C.; Tan, Y.; Lin, S.; Li, H.; Wu, X.; Li, L.; Pei, Y.; Zeng, X. C. J. Am. Chem. Soc. **2013**, 135, 2583–2595.
- (46) Delley, B. J. Chem. Phys. 1990, 92, 508-517.
- (47) Delley, B. J. Chem. Phys. 2000, 113, 7756-7764.
- (48) Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225-232.
- (49) Peng, C. Y.; Schlegel, H. B. Isr. J. Chem. 1993, 33, 449-454.
- (50) Lee, S. S.; Fan, C. Y.; Wu, T. P.; Anderson, S. L. J. Am. Chem. Soc. 2004, 126, 5682-5683.
- (51) Long, C. G.; Gilbertson, J. D.; Vijayaraghavan, G.; Stevenson, K. J.; Pursell, C. J.; Chandler, B. D. *J. Am. Chem. Soc.* **2008**, *130*, 10103–10115.
- (52) The CP2K developers group 2004.
- (53) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.
- (54) Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703-1710.